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Fig. 1: Schematic sequence of simulation pipeline.

Simulated network:
- Definition of network nodes
- Position and orientation
- Links and connectivity strength

Signal parameters:
- Source waveforms
- Data length
- Number of trials

Network comparison:
- Receiver operating
  characteristic
- Frobenius norm
- ANOVA

Connectivity estimation:
- Coherence [5]
- Imaginary Coherence [6]
- Granger Causality (GC) [7]
- PDC [8]
- DTF [9]
- Transfer Entropy [10]
- etc.

Source reconstruction:
- Head model
- Discrete & distributed
  source analysis
- Regularization constant

Network reconstruction:
- Estimation of links and
  connectivity strength

Reconstructed cortical activity
- Source montages in
  BESA Research 6.1 [1,2] use
  fixed positions and
  orientations of nodes

Simulated EEG/MEG recording:
- Head model
- White/Gaussian/Realistic noise
- Signal-to-noise ratio
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Fig. 3: Semilogarithmic plot of Frobenius norm vs. data length 
[s] of Coherence (black), DTF (red) and GC (green) at SNR 
values of 0.1 (top), 1 (middle),10 (bottom).
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Fig. 2: Semilogarithmic plot of Frobenius norm vs. 
regularization for Coherence (black), DTF (red) and GC 
(green) at SNR values of 0.1 (top), 1 (middle), 10 (bottom).

The simulation pipeline consists of four steps:
(1) M/EEG recordings are simulated, based on a network with an adjustable number of 
nodes and connections and user-definable parameters like signal-to-noise ratio (SNR), data 
length, number of trials, etc. In order to simulate volume conduction artifacts and spatial 
source mixing, the simulated EEG or MEG is calculated via forward-modeling using a 
spherical, template, or individual realistic head model. 
(2) A discrete source analysis approach [1] was chosen as inverse method for source 
localization to retrieve time-dependent activity patterns for active brain regions. BESA 
Research 6.1 [2] provides built-in and user-defined source montages. The source model 
can be refined by a priori knowledge on the active network.
(3) Functional and effective connectivity estimators (e.g. Coherence, Imaginary Part of 
Coherence, Granger Causality and DTF) are calculated to reveal the simulated network.
(4) Performance of each estimator is calculated using Frobenius norm [3] and receiver 
operating characteristic [4] to measure the deviation between simulated and reconstructed 
networks.
 
Both simulations presented here, to analyze the influence of regularization constant and 
data length used a cortical network based on four dipoles that were placed in the source 
space as shown in figure 1.
Cortical activity: band-pass filtered white noise signal with additional time-lag of 10ms to 
simulate information flow from source 1 to source 2 and from source 3 to source 4.
Headmodel: concentric 3-sphere volume conduction model.
Noise: 20 dipoles randomly distributed in source space carrying white noise signal. EEG 
potentials were calculated and scaled to SNR levels of [0.1 .. 15].
Regularization: inverse source localization was performed using a truncated singular value 
decomposition (TSVD) with regularization factors ranging from 0% to 20%.
Data length: Recordings of 2s to 200s were simulated to analyze the effect of data length.

Simulations:

Connectivity analysis of neuroimaging data has played a key role in understanding the functional architecture of the brain. 
Here, a simulation pipeline was created that systematically investigates parameters affecting the performance of brain connectivity measures. 
Based on this foundation, simulations were carried out to determine the role of a number of parameters that are known to influence the results 
of neural network analysis. Two of these parameters with particularly extensive impact, namely data length and regularization are presented 
here. 
 

Simulation pipeline

Data LengthRegularization
➤ Connectivity methods are affected differently to changes of 
regularization.
➤ GC provides the best results over all regularization factors in terms 
of accuracy and stability.
➤ Coherence shows an improvement in reconstruction for increasing 
regularization up to
a certain limit.
Further increase
leads to a decline in
network 
reconstruction. This 
value of optimal
reconstruction is
dependent on SNR,
with higher SNR
values requiring
lower regularization.
➤ A decrease in 
reconstruction can 
also be observed for 
DTF and GC for high 
regularization
(>15%) and high
SNR.

➤ GC generally provided more accurate and stable results compared 
to other methods. 
➤ the degree of regularization chosen during inverse source 
reconstruction is crucial for network reconstruction and depends on 
data quality.
➤ long data epochs cannot compensate poor data quality.

Further simulations will be carried out, that will provide an initial 
insight on the performance comparison of different connectivity 
estimators. These evaluations will identify
➤ the influence of the number of active sources.
➤ the number of M/EEG sensors used for forward modelling and 
inverse source reconstruction.

➤ All connectivity methods show an increase of accuracy and stability 
with an increase of data length. 
➤ Accuracy converges towards a certain threshold, depending on 
SNR and
connectivity method
with GC
outperforming DTF 
and Coherence.
➤ Variance
decreases with
higher data length,
but average noise
level does not
decrease when
having more data
available.
➤ Long data epochs 
cannot compensate 
poor data quality.
➤ Coherence is
more strongly
impaired by shorter
data than other
methods.

Results demonstrate that: Outlook:


