

BESA
®

BESA V1.0 File Format Specification

Copyright and Trademarks

This document is copyrighted © 2015 by BESA GmbH. All rights reserved

BESA
®
 is a registered trademark of BESA GmbH, Gräfelfing, Germany.

All other trademarks, brands and product names used in this specification are trademarks of the
respective owners.

Document name: BESA File Format Specification

Revision number: 007

Revision date: 14. December 2015

Table of Contents

2

Table of Contents

Table of Contents .. 2

1. Introduction ... 4

1.1. File extension ... 4

1.2. Tagged file format .. 4

1.3. File compression .. 4

2. BESA File Format ... 5

2.1. Header Block .. 6

2.2. File Main Info Block (FMI Block) .. 7

2.2.1. Address Block .. 12

2.2.2. Staff Block ... 13

2.3. Channel And Location Block (BSA Block) ... 14

2.4. Tag List Block ... 21

2.5. Event Block .. 22

2.5.1. Base Event .. 24

2.5.2. Comment Event ... 25

2.5.3. Marker Event ... 25

2.5.4. Segment Start Event ... 26

2.5.5. Average Segment Start Event ... 27

2.5.6. Multiple Pattern Search Event ... 27

2.5.7. Classified Multiple Pattern Search Event .. 27

2.5.8. Pattern Event ... 27

2.5.9. Trigger Event ... 28

2.5.10. Paired Event .. 28

2.5.11. Artifact Event ... 28

2.5.12. Epoch Event .. 29

2.5.13. Impedance Event... 29

2.5.14. Generic Event .. 30

2.6. Data Block .. 31

3. File Compression format ... 33

3.1. Encoding .. 33

3.1.1. Differentiation .. 35

3.1.2. Pre-Compression ... 35

3.1.3. ZLib Compression ... 38

3.1.4. Final Output ... 40

3.2. Decoding .. 40

Table of Contents

3

3.2.1. ZLib Decompression ... 40

3.2.2. De-Pre-Compression .. 40

3.2.3. Integration ... 41

1. File extension

4

1. Introduction

1.1. File extension

The file extension of files written in BESA File Format is .besa.

1.2. Tagged file format

The BESA File Format is being realized as a tagged file format.

A file data written in this format is composed of a set of data elements.

Each data element is started by a tag which describes the following data section. Each tag is composed
of a tag ID and a tag offset.

The tag ID is a unique identifier specifying the kind of data written in the data section. It is stored using
four 8-bit characters (4 Bytes). Please find more details to all available tag IDs in chapter 2.

The tag offset specifies the length of the following data section. The offset is stored as one 32-Bit
Unsigned Integer (4 Bytes) which specifies the length of the following data section in bytes. The offset
can also be used to skip the current data element, e.g. if an unknown tag ID is read.

A data section itself may contain a set of (data-section-specific) data elements, e.g. the event block
explained in chapter 2.5.

Note: If file writing is still in progress or an error occurred during file writing, the offset value of the corrupt
or incomplete section is set to 0xFFFFFFFF. For some special cases the data section may be empty.
Then the offset is set to 0.

1.3. File compression

The recorded data are stored in data blocks in a compressed or non compressed data format. Please find
more details to data blocks in chapter 2.6 and to the compression algorithm in chapter 3.

ID offset

4 Bytes:

data section ID

4 Bytes:

data section size

<data section size> Bytes:

data (format depends on data section ID)

tag data section

data element

data element 1

ID offset data section

data element 2
...

ID offset data section

ID offset data section

data element 1

ID offset data section

data element 2
...

 1.3. File compression

5

2. BESA File Format

As introduced in chapter 1.2, the BESA File Format is composed of a set of data elements. Each data
element starts with a tag that describes the data format of the following data section. This chapter
describes the meaning of all tags that are part of the BESA File Format.

The data elements of the BESA File Format are arranged in blocks. The following blocks are used to
group data elements together by content:

Exclusive of the header block that is stored once at the beginning of the file, all other blocks may be
written multiple times to the file. The reason is that it shall be possible to modify already stored
information or to add data to the end of the file without changing already written parts of file. In addition
the blocks must not be stored in the order above.

For fast access to multiple blocks of the same type some of the blocks have an additional 64-bit integer
offset that points on the next data element of the same block type (e.g. <FMI offset> in figure above). This
additional offset is not tagged! It is followed by a data section with several block-specific (tagged) data
elements.

The blocks may never exceed a size of 4GB minus one byte (0xFFFFFFFE) since 0xFFFFFFFF is used
as flag to indicate an error during the write process. If e.g. data for a data section gets larger than
0xFFFFFFFE, it has to be written to multiple blocks. This way we get a faster data access and the tag
offsets can be stored as 32-bit integers.

...

FMI offset

file main info block

BFMI offset data section FMI offset

next file main info block

BFMI offset data section
...

...

CAL offset

channel and location block

BCAL offset data section CAL offset

next channel and location block

BCAL offset data section
...

...

TAG offset

tag list block

BTAG offset data section TAG offset

next tag list block

BTAG offset data section
...

BCF1 offset data section

header block next block
...

ID offset data section

BEVT offset data section

event block next block
...

ID offset data section

BDAT offset data section

data block next block
...

ID offset data section

2.1 Header Block

6

2.1. Header Block

The header block identified by the tag ID BCF1 is used for specifying the file header information. It is
always written as the first data element in BESA Files.

The data section consists of block specific data elements with the following tag IDs:

Detailed description of the header block specific data elements written to its data section:

VERS

File version string.

Stored as a series of 2-byte characters.

OFFM

Offset that specifies the position of the first main info block (see chapter 2.2).

Stored as 64-bit integer.

OFTL

Offset that specifies the position of the first tag list block (see chapter 2.4).

Stored as 64-bit integer.

OFCL

Offset that specifies the position of the first channel and location block (see chapter 2.3).

Stored as 64-bit integer.

BCF1

VERS

OFFM

OFTL

OFBI

File version

Offset/Link to the first file main info block

Offset/Link to the first tag list block

Offset/Link to the first channel and location block

 2.2. File Main Info Block (FMI Block)

7

2.2. File Main Info Block (FMI Block)

The file main info block (FMI block) identified by the tag ID BFMI is used for specifying common
acquisition information.

The data section starts with a 64-bit offset (<__int64>) that specifies the position of the next FMI block
since a BESA File may contain multiple FMI blocks.

Note: If multiple FMI blocks contain data of the same type (tag ID), the data of the last block have to be
used since the “old” data is not deleted. It has been overwritten by adding a new FMI block with the new
data at the end of the file. This way we do not have to rewrite the whole file for the case a larger data
content than the currently set shall be written.

The rest of the data section consists of block specific data elements with following tag IDs:

BFMI

SAMT

SAMP

RECD

RECS

RIBN

RATC

RSEQ

Total number of samples

Number of samples per second

Recording start date and time

Recording system

Name of the input box

Amplifier time constant

Sequence number

<__int64> Offset/Link to the next file FMI block (UNTAGGED DATA)

FINN Name of the institution

FINA Address of the institution

FENA Encryption algorithm

FCOA Compression algorithm

RECE Recording end date and time

RECO Recording time offset to GMT

RESW Name of recording software

RSID Session unique identifier

RSNR Session number

RSTC Study comment

RSTA Responsible staff

ASTR Street name

ASTA State

ACIT City

APOS Post code

ACOU Country

APHO Phone number

SNAM Name

SINI Initials

SFUN Function

2.2 File Main Info Block (FMI Block)

8

Detailed description of the FMI block specific data elements written to its data section:

SAMT

Number of samples.

Stored as 64-bit integer value.

SAMP

Number of samples per second (Sampling rate).

Stored as double value.

FINN

Name of the institution.

Stored as a series of 2-byte characters.

FINA

Address of the institution.

For more information for the address sub tags see chapter 2.2.1.

FENA

Name of the encryption algorithm.

Stored as a series of 2-byte characters.

FCOA

Name of the compression algorithm.

Stored as a series of 2-byte characters.

PATN

PATD

PATC

PATI

INF1

INF2

Subject last name

Subject date of birth

Subject comment

Subject ID

Additional information 1

Additional information 2

PNAF Subject first name

PNAM Subject middle name

PNAA Anonymized subject name

PNAT Subject title

PDOD Subject date of death

PAGE Subject gender

PAWE Subject weight

PAHE Subject height

PAMS Subject marital status

PAAD Subject address

PALA Subject language

PAMH Subject medical history

 2.2. File Main Info Block (FMI Block)

9

RECD

Start date and time of recording.

The date/time of the first sample in the file. This does not need to be the very first date and time over all
samples in the file, e.g. the file contains more than one segment and a segment with an earlier recording
time is stored behind a segment with a later recording time in the file.

Stored as a series of 2-byte characters.

Syntax: YYYYMMDDHHMMSSmmmuuu for Year, Month, Day, Hour, Minute, Second, milliseconds and
microseconds.

RECE

End date and time of recording.

NOT the date/time of the last sample in the file but specifies the date/time of the last sample of the
segment with the latest recording time (which might have been stored in front of segments with earlier
recoding times). This value might be written to file for specific file formats, but it is ignored when a file is
opened. Instead, it is calculated after opening.

Stored as a series of 2-byte characters.

Syntax: YYYYMMDDHHMMSSmmmuuu for Year, Month, Day, Hour, Minute, Second, milliseconds and
microseconds.

RECO

Recording time offset to GMT.

Stored as float value.

RECS

Recording system.

Stored as a series of 2-byte characters.

RIBN

Input box name. (Additional recording system information.)

Stored as a series of 2-byte characters.

RESW

Recording software name.

Stored as a series of 2-byte characters.

RATC

Amplifier time constant.

Stored as float value.

RSEQ

Sequence number. (File format specific value)

Stored as unsigned 32bit-integer value (DWORD).

RSID

Session unique identifier.

Stored as a series of 2-byte characters.

2.2 File Main Info Block (FMI Block)

10

RSNR

Session number.

Stored as 32-bit integer value.

RSTC

Study comment.

Stored as a series of 2-byte characters.

RSTA

Responsible staff.

For more information for the staff sub tags see chapter 2.2.2.

PNAF

Subject first name.

Stored as a series of 2-byte characters.

PNAM

Subject middle name.

Stored as a series of 2-byte characters.

PATN

Subject last name.

Stored as a series of 2-byte characters.

PNAA

Anonymized subject name.

Stored as a series of 2-byte characters.

PNAT

Subject title.

Stored as a series of 2-byte characters.

PATD

Subject birth date.

Stored as a series of 2-byte characters.

Syntax: YYYYMMDD for Year, Month and Day.

PDOD

Subject death date.

Stored as a series of 2-byte characters.

Syntax: YYYYMMDD for Year, Month and Day.

PAGE

Subject gender.

Stored as 2-byte character. One of {‘M’ = men, ‘F’ = female}.

 2.2. File Main Info Block (FMI Block)

11

PAWE

Subject weight.

Stored as float value.

PAHE

Subject height.

Stored as float value.

PAMS

Subject marital status.

Stored as 2-byte character. One of {‘S’ = single, ‘M’ = married, ‘W’ = widowed, ‘D’ = divorced}.

PAAD

Subject address.

For more information for the address sub tags see chapter 2.2.1.

PALA

Subject language.

Stored as a series of 2-byte characters.

PAMH

Subject medical history.

Stored as a series of 2-byte characters.

PATC

Subject specific comment.

Stored as a series of 2-byte characters.

PATI

Subject specific ID.

Stored as a series of 2-byte characters.

INF1

Additional information 1.

Stored as a series of 2-byte characters.

INF2

Additional information 2.

Stored as a series of 2-byte characters.

2.2 File Main Info Block (FMI Block)

12

2.2.1. Address Block

The address block is a section of sub tags and has no own identifier.

Detailed description of the address block specific data elements written to its data section:

ASTR

Street name.

Stored as a series of 2-byte characters.

ASTA

State.

Stored as a series of 2-byte characters.

ACIT

City.

Stored as a series of 2-byte characters.

APOS

Post code.

Stored as a series of 2-byte characters.

ACOU

Country.

Stored as a series of 2-byte characters.

APHO

Phone number.

Stored as a series of 2-byte characters.

ASTR Street name

ASTA State

ACIT City

APOS Post code

ACOU Country

APHO Phone number

 2.2. File Main Info Block (FMI Block)

13

2.2.2. Staff Block

The staff block is a section of sub tags and has no own identifier.

Detailed description of the staff block specific data elements written to its data section:

SNAM

Name.

Stored as a series of 2-byte characters.

SINI

Initials.

Stored as a series of 2-byte characters.

SFUN

Function.

Stored as a series of 2-byte characters.

SNAM Name

SINI Initials

SFUN Function

2.3 Channel And Location Block (BSA Block)

14

2.3. Channel And Location Block (BSA Block)

The channel and location block (BSA block) identified by the tag ID BCAL is used for specifying the
channel and coordinate related acquisition information.

The data section starts with a 64-bit offset (<__int64>) that specifies the position of the next BSA block
since a BESA File may contain multiple BSA blocks.

Note: If multiple BSA blocks contain data of the same type (tag ID), the data of the last block have to be
used since the “old” data is not deleted. It has been overwritten by adding a new BSA block with the new
data at the end of the file. This way we do not have to rewrite the whole file for the case a larger data
content than the currently set shall be written.

The rest of the data section consists of block specific data elements with following tag IDs:

Detailed description of the BSA block specific data elements written to its data section:

COMC

BESA CTF component.

For internal use only (BSACtfComponentsArray).

COMH

BESA head transformation

For internal use only (BSAHeadTransformationStruct).

BCAL

COMC

COMH

CHFL

CHNR

CHTS

CHCO

CHET

CHLA

CHSC

CHSI

HCMM

HRMM

FIDC

CTF components

Head transformations

Channel flag

Total number of channels

Channel type and states of a channel with the specified index

Channel coordinates in mm

Electrode thickness

Channel label of a channel with the specified index

Spatial components

Spline interpolation smoothing constant

Head center in mm

Head radius in mm

Fiducial coordinates in mm

HSPN

HSPC

Total number of head surface points

Head surface point coordinates

<__int64> Offset/Link to the next channel and location block (UNTAGGED DATA)

CHLS Least significant bits of data

CHSF Sampling frequency

CHCM Channel comments

CHNU Channel numbers

CHFI Filter information

CHCU Channel units

HSPD Head surface point labels

 2.3. Channel And Location Block (BSA Block)

15

CHFL

Channel flag.

Stored as unsigned 32bit-integer value (DWORD).

This flag specifies additional information concerning the channel coordinates. It is set as a bitwise
combination of the following bit flags:

0x0001 (BSA_ELECTRODE_COORDINATES_FROM_LABELS)

This bit is set if electrode coordinates are not available. In this case, default coordinates are
assigned according to electrode labels (see description of the CHLA data element). Note that these
labels must be standard names according to the 10-20 and 10-10 electrode definitions.

If this bit is set, the electrode coordinate information set in the CHCO data element is ignored.

0x0002 (BSA_SUPPRESS_SPHERE_TO_ELLIPSOID_TRANSFORMATION)

This bit is set if the data originated from a spherical MEG phantom or from simulated EEG or MEG
using a spherical head model.

In this case, the sphere-to-ellipsoid transformation is suppressed.

Note that this bit flag must not be combined with the bit flag
BSA_ELECTRODE_COORDINATES_FROM_LABELS.

0x0004 (BSA_ELECTRODE_COORDINATES_ON_SPHERE)

This bit is set if electrode coordinates are predefined based on a sphere, e.g. from simulated data.

In this case, a sphere is not fitted to the electrode cloud, the sphere is not rotated to known
electrode coordinates, and the sphere-to-ellipsoid transformation is suppressed.

The coordinates must be defined so that the x axis is oriented to the right ear, the y axis towards
the nose, and the z axis upwards. The Cz electrode has the coordinates 0,0,85 for a head radius of
85 mm and head center at 0,0,0.

If the center of the electrode sphere is not 0,0,0 or the sphere radius is not 85 mm, the head center
or head radius must be specified using the HCMM data element and the HRMM data element.

Note that this bit flag must not be combined with the bit flag
BSA_ELECTRODE_COORDINATES_FROM_LABELS.

Note that this bit flag must not be combined with the bit flag
BSA_SUPPRESS_SPHERE_TO_ELLIPSOID_TRANSFORMATION.

0x0008 (BSA_ADAPT_SPHERICAL_EEG_TO_MEG_COORDS)

This bit is set if electrode coordinates were not digitized, and digitized head surface points (e.g.
fiducials) are available.

This would be the case if MEG was recorded (always digitized), and electrode coordinates were
not. If this bit is set, then the spherical electrode coordinates will be scaled to the head center and
radius computed from the head surface points. This assumes that the electrode coordinates are
provided relative to a sphere, but with zero point through the T9-T10 axis.

0x0010 (BSA_SOURCE_CHANNELS_DERIVED_FROM_MEG):

This bit is set if source channels were derived from MEG.

For internal use only (TFC module).

CHNR

Total number of channels.

Stored as unsigned 16bit-integer value (WORD).

This value specifies the total number of channels in each condition. This is the sum of all channels of any
type, bad and not bad. Note that the EEG common reference should be included if it is a single electrode
(and NOT a linked reference).

2.3 Channel And Location Block (BSA Block)

16

CHTS

Channel index followed by channel type and state.

Stored as unsigned 16bit-integer value (WORD) followed by unsigned 32bit-integer value (DWORD).

The channel index is written as WORD and identifies the position in the channel type and state array.

The channel type and state is written as DWORD. It is set as a bitwise combination of a flag that specifies
the channel type and a flag that specifies the channel state.

This data element is written <number of channels (CHNR)> times.

Note: If at least one MEG channel is specified (channel type), the fiducials must be defined in the FIDC
data element.

The channel type can be set as follows:

0x00000000 (BSA_CHANTYPE_UNDEFINED)

 The channel is not set / invalid.

0x00010000 (BSA_CHANTYPE_POLYGRAPHIC)

Polygraphic channel, coordinate information is ignored.

0x00020000 (BSA_CHANTYPE_TRIGGER)

Trigger channel, coordinate information is ignored.

0x00040000 (BSA_CHANTYPE_CORTICALGRID)

Cortical grid electrode, coordinate information is ignored for the moment.

Later we will use the information to display the grid electrode in the mapping view.

0x00080000 (BSA_CHANTYPE_INTRACRANIAL)

Intracranial electrode, coordinate information is ignored for the moment.

Later we will use the information to display the grid electrode in the mapping view.

0x00100000 (BSA_CHANTYPE_SCALPELECTRODE)

Scalp electrode. Coordinate information is required, unless the coordinates are to be defined from
their labels (the bit BSA_ELECTRODE_COORDINATES_FROM_LABELS is set in the member
CHFL data element).

This channel is used for SA fitting (if not marked as 'bad').

0x00200000 (BSA_CHANTYPE_MAGNETOMETER)

MEG sensor, magnetometer. Coordinate information is required.

This channel is used for SA fitting (if not marked as 'bad').

0x00400000 (BSA_CHANTYPE_AXIAL_GRADIOMETER)

MEG sensor, axial gradiometer. Coordinate information is required. This channel is used for SA
fitting (if not marked as 'bad').

Note: If measured data is specified in the ppfData member of the "DATA" section, data must be
given in femtotesla.

0x01000000 (BSA_CHANTYPE_PLANAR_GRADIOMETER)

MEG sensor, planar gradiometer. Coordinate information is required. This channel is used for SA
fitting (if not marked as 'bad').

Note: If measured data is specified in the ppfData member of the "DATA" section, data must be
given in femtotesla per cm!

 2.3. Channel And Location Block (BSA Block)

17

0x00800000 (BSA_CHANTYPE_MEGREFERENCE)

MEG reference channel. Coordinate information is required.

This channel is not used for fitting but it is used to correct the fit. The kind of correction depends on
the MEG system type.

Note that an MEG reference channel will be used whether or not it is marked as 'bad'.

0x02000000 (BSA_CHANTYPE_NKC_REFERENCE)

Special reference channel used by NKC, coordinate information is ignored.

The channel state can be set as follows:

0x0001 (BSA_CHANSTATE_BAD)

The channel is marked as 'bad'.

0x0002 (BSA_CHANSTATE_REFERENCE)

The channel is the EEG reference channel.

Note: Only one channel may be defined as the EEG reference!

0x0004 (BSA_CHANSTATE_INTERPOLRECORDED)

Set this state if the channel has to be interpolated by the montage module. If this value is set, the
state value BSA_CHANSTATE_BAD is ignored.

If this flag is set when calling other modules, the channel is treated as good.

0x1000 (BSA_CHANSTATE_INVISIBLE)

Set this state if the channel should be ignored by the montage module. The channel is treated in
this case as if it did not exist. If this flag is set when calling other modules, it is currently ignored.

CHCO

Channel locations (in mm) and orientations (normalized vectors).

Stored as an array of 9 * <number of channels (CHNR)> float values.

The locations and orientations are arranged as follows:

 9 location/orientation coordinates of the first channel, followed by

 9 location/orientation coordinates of the second channel, etc.

The location/orientation values are set depending on the channel type that was set in CHTS section for
the associated channel:

0x00100000 (BSA_CHANTYPE_SCALPELECTRODE)

Entries 0 to 2 contain the location (x,y,z).

Entries 3 to 8 are ignored.

0x00200000 (BSA_CHANTYPE_MAGNETOMETER)

Entries 0 to 2 contain the location (x,y,z).

Entries 3 to 5 are ignored.

Entries 6 to 8 contain the orientation (x,y,z).

0x00400000 (BSA_CHANTYPE_AXIAL_GRADIOMETER)

0x01000000 (BSA_CHANTYPE_PLANAR_GRADIOMETER)

Entries 0 to 2 contain the location (x,y,z) of the 1st coil.

Entries 3 to 5 contain the location of the 2nd coil.

Entries 6 to 8 contain the orientation (x,y,z).

2.3 Channel And Location Block (BSA Block)

18

0x00800000 (BSA_CHANTYPE_MEGREFERENCE)

Entries 0 to 2 contain the location (x,y,z).

Entries 6 to 8 contain the orientation (x,y,z).

Entries 3 to 5 are checked to decide if the channel is a magnetometer or gradiometer: If all three
coordinates are zero the sensor is assumed to be a magnetometer. Otherwise the sensor is
assumed to be a gradiometer and the entries 3 to 5 specify the location of the 2nd coil.

CHET

Electrode thickness (in mm).

Stored as float value.

Used to specify the distance from the digitization point (e.g. on top of the electrode) to the scalp surface.
Only required if electrode locations were digitized.

CHLA

Channel index followed by channel label.

Stored as unsigned 16bit-integer value (WORD) followed by a series of 2-byte characters.

The channel index is written to WORD and identifies the position to store the data in the channel label
array.

The channel label is written to 2-byte characters. Note that the length of the string is given by tag offset (-
2 bytes for the channel index).

This data element is written <number of channels (CHNR)> times.

CHSC

BESA spatial components

For internal use only (BSASpatialComponentsArray).

CHSI

Spline interpolation smoothing constant.

Stored as float value.

Used for interpolating data for channel positions (e.g. for virtual montages) using spherical spline
interpolation.

If this value is set to zero or a negative value the default value is used.

CHLS

Least significant bits (LSB)

Stored as an array <number of channels (CHNR)> float values.

Used for reinterpretation of data values stored in 16-bit integer format.

Example:

A least significant bit value of 0.4 [µV] means that the 16-bit integer value 1 is interpreted as 0.4 [µV].

Please note that zero or negative LSB values are not allowed. If a non-positive value is found in the array,
a value of "1.f" is used instead.

CHSF

Sampling frequency.

Stored as an array <number of channels (CHNR)> double values.

 2.3. Channel And Location Block (BSA Block)

19

CHCM

Channel comments.

Stored as an array <number of channels (CHNR)> series of characters.

CHNU

Physical channel numbers.

Stored as an array <number of channels (CHNR)> integer values.

CHFI

Filter information.

Stored as an array <number of channels (CHNR)> filter info objects, which contain filter settings.

One filter info object stores following information:

• Structure size, stored as unsigned 32-byte integer value.

• Filter state, stored as unsigned 32-byte integer value and can be set as follows:

0x00000001 (FLT_LOWCUTOFF_ACTIVE)
0x00000002 (FLT_HIGHCUTOFF_ACTIVE)
0x00000004 (FLT_NOTCH_ACTIVE)
0x00000008 (FLT_BAND_PASS_ACTIVE)
0x01000000 (FLT_PRE_LOWCUTOFF_ACTIVE)
0x02000000 (FLT_PRE_SUBTRACT_BASELINE)
These flags specify which filters are active.

0x00000000 (FLT_LOWCUTOFF_TYPE_FORWARD)
0x00000010 (FLT_LOWCUTOFF_TYPE_ZERO_PHASE)
0x00000020 (FLT_LOWCUTOFF_TYPE_BACKWARD)
These flags specify the low cutoff filter type.

0x00000000 (FLT_LOWCUTOFF_SLOPE_06DB)
0x00000100 (FLT_LOWCUTOFF_SLOPE_12DB)
0x00000200 (FLT_LOWCUTOFF_SLOPE_24DB)
0x00000300 (FLT_LOWCUTOFF_SLOPE_48DB)
These flags specify the slope of the low cutoff filter.

0x00000000 (FLT_HIGHCUTOFF_TYPE_ZERO_PHASE)
0x00001000 (FLT_HIGHCUTOFF_TYPE_FORWARD)
0x00002000 (FLT_HIGHCUTOFF_TYPE_BACKWARD)
These flags specify the high cutoff filter type.

0x00000000 (FLT_HIGHCUTOFF_SLOPE_12DB)
0x00010000 (FLT_HIGHCUTOFF_SLOPE_06DB)
0x00020000 (FLT_HIGHCUTOFF_SLOPE_24DB)
0x00030000 (FLT_HIGHCUTOFF_SLOPE_48DB)
These flags specify the slope of the high cutoff filter.

0x00100000 (FLT_NOTCH_REMOVE_2ND_HARMONIC)
0x00200000 (FLT_NOTCH_REMOVE_3RD_HARMONIC)
If one of these flag is set, the notch filter is applied repeatedly to remove the second and/or third
harmonics of the notch frequency.

• Filter frequencies and band widths if the corresponding filters are active, stored as 6 float values:

Frequency of the low cutoff filter,
frequency of the high cutoff filter,
frequency of the notch filter,
width of the notch filter,
frequency of the band pass filter,
width of the band pass filter.

2.3 Channel And Location Block (BSA Block)

20

CHCU

Channel units.

Stored as an array <number of channels (CHNR)> series of 2-byte characters.

HCMM

Head center (in mm).

Stored as 3 float values (x, y, z).

HRMM

Head radius (in mm).

Stored as float value.

Set this value to zero if no head radius is available. In this case, the head radius is computed using the
electrode locations, the fiducials (see FIDC), and the additional head surface points (see HSPN).

FIDC

Fiducial coordinates (in mm).

Stored as 9 float values:

• Nasion (Nz) position (x, y, z),

• left preauricular point (T9) position (x, y, z) and

• right preauricular point (T10) position (x, y, z).

The fiducials are required, if MEG channels are defined. The fiducials are only recommended if digitized
locations (electrodes, etc.) are available.

HSPN

Total number of additional head surface points.

Stored as unsigned 16bit-integer value (WORD).

HSPC

Head surface point index followed by head surface point coordinates (in mm).

Stored as unsigned 16bit-integer value (WORD) followed by 3 floats.

The channel index is written to WORD and identifies the position to store the data in the head surface
point coordinates array.

The head surface point coordinates (x, y, z) are written to the float values.

This data element is written <number of head surface points (HSPN)> times.

HSPD

Head surface point index followed by head surface point label.

Stored as unsigned 16bit-integer value (WORD) followed by a series of 2-byte charactes.

The channel index is written to WORD and identifies the position to store the data in the head surface
point labels array.

The head surface point label is written to 2-byte characters. Note that the length of the string is given by
tag offset (-2 bytes for the channel index).

This data element is written <number of head surface points (HSPN)> times.

 2.4. Tag List Block

21

2.4. Tag List Block

The tag list block identified by the tag ID BTAG is used for storing file positions of block tags to allow a
faster access to the FMI, BSA, event, data and tag list blocks introduced in chapter 2.

The data section starts with a 64-bit offset (<__int64>) that specifies the position of the next tag list block
since a BESA File may contain multiple tag list blocks.

The rest of the data section consists of block specific data elements with following tag IDs:

Detailed description of the tag list block specific data elements written to its data section:

TAGE

Tag list entry.

Stored as four 2-byte characters followed by a 64-bit integer and a 32-bit integer.

The four 2-byte characters represent the block tag ID (BFMI, BCAL, BTAG, BEVT, BDAT).

The 64-bit integer represents the file position of the block with the ID above.

The 32-bit integer represents the number of samples stored in a data block (BDAT). Note that this value
is only set for data blocks.

BTAG

TAGE Tag list entry

<__int64> Offset/Link to the next tag list block (UNTAGGED DATA)

2.5 Event Block

22

2.5. Event Block

The event block identified by the tag ID BEVT is used for storing event information.

A BESA File may contain multiple event blocks.

Note: If multiple event blocks contain data of the same event, the data of the last block have to be used
since the “old” data is not deleted. It has been overwritten by adding a new event block with the new data
at the end of the file. This way we do not have to rewrite the whole file for the case a larger data content
than the currently set shall be written.

The tag ID of the event block is BEVT. This data section contains only one LIST data element.

The data section of a LIST data element is composed of a header (HEAD) data element and multiple
<event type> data elements:

Detailed description of the event block specific data elements written to its data section:

EVTS

Number of events.

Stored as 32-bit integer value.

Specifies the number of <event type> sections part of the LIST data section.

VERS

Version number.

Stored as 32-bit integer value.

Version number is currently set to 1.

BEVT

<event type>

VERS

HEAD

Number of events

Version number

EVTS

<event type>

<event type tag>

<event type tag>

...

...

<event type tag>

<event type tag>

...

LIST

<Number of events> elements

 2.5. Event Block

23

The <event type> tag may be one of the following tags:

The event data section consists of data elements with event type specific tag IDs (specified as <event
type tag> in the figure on the previous page). These IDs and the corresponding data are described in
detail in the following subsections.

Note:

All events are derived from the base event (BASE), which stores the basic information of the event.

Furthermore there are other derivations for events which store their information of several event types.
E.g. the artifact (ARTI) event is derived from the paired event (PAIR), to store the start event and the end
event information. And each of the ‘partners’ contain an annotation stored in the comment event (COMM).

Here is an overview over the event dependencies:

COMM

SEGM

GENE

MARK

ASGM

ARTI

TRIG

PATT

MPSC

MPS

BASE

IMP

EPOC

Base event

Comment event

Marker event

Generic event

Segment start event

Average segment start event

Multiple pattern search event

Classified multiple pattern search event

Pattern event

Trigger event

Artifact event

Epoch event

Impedance event

PAIR Paired event

COMMPATTMARKMPS

MPSC GENEASGMSEGMTRIGPAIR

BASE

EPOCARTI

IMP

2.5 Event Block

24

2.5.1. Base Event

The base event is identified by the tag ID BASE.

The data section consists of block specific data elements with following tag IDs:

Detailed description of the base event specific data elements written to its data section:

SAMP

(Zero-based) file sample index.

Stored as 64-bit integer value.

TIME

Event time.

Stored as a time information sequence:

WORD Year

WORD Month

WORD DayOfWeek

WORD Day

WORD Hour

WORD Minute

WORD Second

WORD Milliseconds

double Microseconds

DWORD State flag (for internal use).

SIDX

(Zero-based) segment index.

Stored as 32-bit integer value.

CODE

(Zero-based) event code.

Stored as 32-bit integer value.

This value is used by events of type Pattern (PATT) and Trigger (TRIG) to store the pattern number and
the trigger code. Note that the number/code minus 1 is stored. Additionally, events of type Artifact (ARTI)
and Epoch (EPOC) use the code value internally due to historical reasons. Other event types may use
the code value to store additional information.

BASE

SAMP

TIME

SIDX

CODE

EVID

STAT

(Zero-based) file sample index

Event time

(Zero-based) segment index

Event state

(Zero-based) internal BESA event ID

(Zero-based) event code

 2.5. Event Block

25

EVID

(Zero-based) internal BESA event ID.

Stored as 32-bit integer value.

STAT

Event state.

Stored as unsigned 32-bit integer value (DWORD).

The event state can be set as follows:

0x00000010 (EVT_STATE_MARKED1),

0x00000020 (EVT_STATE_MARKED2),

0x00000040 (EVT_STATE_MARKED3),

0x00000080 (EVT_STATE_MARKED4):

Mark and group specific events.

0x01000000 (EVT_STATE_DELETED):

The "Deleted" state specifies, that this event has been deleted or this event deletes an identical
second event in the event list.

2.5.2. Comment Event

The comment event is identified by the tag ID COMM.

The data section consists of block specific data elements with following tag IDs:

Detailed description of the comment event specific data elements written to its data section:

TEXT

Comment text.

Stored as a series of 2-byte characters.

2.5.3. Marker Event

The marker event is identified by the tag ID MARK.

The data section consists of block specific data elements with following tag IDs:

COMM

TEXT Comment text

... Data elements of BASE section

See description of base event section

MARK

... Data elements of BASE section

See description of base event section

2.5 Event Block

26

2.5.4. Segment Start Event

The marker event is identified by the tag ID SEGM.

The data section consists of block specific data elements with following tag IDs:

Detailed description of the segment start event specific data elements written to its data section:

SBEG

Segment start time.

Stored as a time information sequence:

WORD Year

WORD Month

WORD DayOfWeek

WORD Day

WORD Hour

WORD Minute

WORD Second

WORD Milliseconds

double Microseconds

DWORD State flag (for internal use).

DAYT

Day time of segment start in microseconds from the recording start or date of the last segment start (at
00:00:00) to the date and time of this segment start.

Stored as double value.

INTE

Sampling interval in microseconds, means time between samples (the inverse of the sampling rate)

Stored as double value.

SEGM

SBEG Segment start time

DAYT Day time of segment start in microseconds

INTE Sampling interval in microseconds

... Data elements of COMM section

See description of comment event section

 2.5. Event Block

27

2.5.5. Average Segment Start Event

The marker event is identified by the tag ID ASGM.

The data section consists of block specific data elements with following tag IDs:

Detailed description of the average segment start event specific data elements written to its data section:

STIM

Prestimulus baseline interval in microseconds.

Stored as double value.

AVRS

Number of averages.

Stored as 32-bit integer value.

2.5.6. Multiple Pattern Search Event

The multiple pattern search event is identified by the tag ID MPS. It is used by BESA internally.

2.5.7. Classified Multiple Pattern Search Event

The classified multiple pattern search event is identified by the tag ID MPSC. It is used by BESA
internally.

2.5.8. Pattern Event

The pattern event is identified by the tag ID PATT.

The data section consists of block specific data elements with following tag IDs:

ASGM

STIM Prestimulus interval in microseconds

AVRS Number of averages

... Data elements of COMM section

See description of comment event section

PATT

... Data elements of BASE section

See description of base event section

2.5 Event Block

28

2.5.9. Trigger Event

The trigger event is identified by the tag ID TRIG.

The data section consists of block specific data elements with following tag IDs:

Detailed description of the trigger event specific data elements written to its data section:

CODE

Event reaction code.

Stored as 32-bit integer value.

TIME

Event reaction time in seconds.

Stored as float value.

2.5.10. Paired Event

The paired event is identified by the tag ID PAIR.

The data section consists of block specific data elements with following tag IDs:

Detailed description of the paired event specific data elements written to its data section:

PART

Event information of the partner event.

The data section is used to write the partner event information as a data element (starting with <event
type> tag ID of partner event).

2.5.11. Artifact Event

The artifact event is identified by the tag ID ARTI.

The data section consists of block specific data elements with following tag IDs:

TRIG

... Data elements of COMM section

See description of comment event section

CODE Reaction code

TIME Reaction time

PAIR

... Data elements of COMM section

See description of comment event section

PART Event information of the partner event.

ARTI

... Data elements of PAIR section

See description of paired event section

 2.5. Event Block

29

2.5.12. Epoch Event

The epoch event is identified by the tag ID EPOC.

The data section consists of block specific data elements with following tag IDs:

2.5.13. Impedance Event

The impendance event is identified by the tag ID IMP.

The data section consists of block specific data elements with following tag IDs:

Detailed description of the impedance event specific data elements written to its data section:

FORM

Indicates the format used to store impedance values in VAL.

Stored as 32-bit integer value.

Set to 0 if the impedance status (valid/invalid) is stored.
Set to 1 if impedance values (in kOhm) are stored.

NR

Number of channels for which impedance information is stored. (Number of elements stored in TYPE,
LABL and VAL)

Stored as unsigned 32bit-integer value (DWORD).

TYPE

Array with NR channel types.

Stored as unsigned 32bit-integer values (DWORDs).

The flags used for channel type description are the same as used for the CHTS data elements (specified
in chapter 2.3).

Note: Channel type and channel label are used for identification of channel for which impedance
information is set. (Compare to data elements CHTS and CHLA, specified in chapter 2.3).

EPOC

... Data elements of PAIR section

See description of paired event section

IMP

FORM

NR

TYPE

LABL

VAL

Format

Number of channels

Channel type

Value

Channel label

... Data elements of BASE section

See description of base event section

2.5 Event Block

30

LABL

Array with NR channel labels.

Stored as a series of 2-byte characters.

Note: Channel type and channel label are used for identification of channel for which impedance
information is set. (Compare to data elements CHTS and CHLA as specified in chapter 2.3).

VAL

Array with NR impedance values.

Stored as float values

Depending on format set in FORM either an impedance STATUS (ok/not ok) or an impedance VALUE (in
kOhm) is stored. A value of -1 means that the impedance is not set or invalid

2.5.14. Generic Event

The generic event type identified by the tag ID GENE was defined to be able to store events that do not
belong to any of the other specified event types.

The data section consists of block specific data elements with following tag IDs:

GENE

... Data elements of COMM section

See description of comment event section

 2.6. Data Block

31

2.6. Data Block

The data block identified by the tag ID BDAT is used for storing data.

The data block data section consists of data elements with block-specific tag IDs and offsets that specify
the position of the next data element.

The data section consists of block specific data elements with following tag IDs:

Detailed description of the data block specific data elements written to its data section:

DATT

Specifies the data type of the written data and the information whether data are written compressed or
uncompressed.

Stored as unsigned 32bit-integer value (DWORD).

It is set as a bitwise combination of flags specifying the data type and flags specifying the compression.

The data type can be set as follows:

0x0000UL (BESA_DATA_TYPE_FLOAT)

Stored as float.

0x0001UL (BESA_DATA_TYPE_INT16)

Stored as 16-bit integer.

Compare to description of the least significant bit (as specified in the CHLS data section, see
chapter 2.3).

The compression can be set as follows:

0x0000UL (BESA_DATA_TYPE_UNCOMPRESSED)

Do not use compression.

0x0010UL (BESA_DATA_TYPE_COMPRESSED)

Use data compression as described in the next chapter.

DATS

Specifies the number of samples written to block of data.

Stored as 32-bit-integer value.

BDAT

DATT

DATS

DATA

Data type of written data (int16 or float, compressed or not)

Number of samples in data block

Data

2.6 Data Block

32

DATA

Block of data. Consists of <number of channels> * <number of samples> data values.

First all samples of channel 1 are stored, then all samples of channel 2 are stored etc.

The number of channels is specified in the CHNR data section (see chapter 2.3) and the number of
samples is specified in the DATS data element introduced in this chapter.

The format of data depends on data type and compression as set in data element DATT:

• Uncompressed float data are stored as data block of <number of channels> * <number of samples>
float values.

• Uncompressed 16-bit integer data are stored as data block of <number of channels> * <number of
samples> 16-bit integer values.

• Compressed data (float or 16-bit integer) are stored as a data block of the BYTEs that are output of
the compression algorithm as described in chapter 3.

 3. File Compression format

33

3. File Compression format

The file compression performed by BESA works in combination with the ZLib library freely available at
http://zlib.net/.

In short the BESA file format encoding consists of two differentiations, a pre-compression and finally the
ZLib compression for each channel. The decoding is achieved by simply applying the reverse operation.

The BESA file compression format is lossless provided the data to be compressed is of 16-bit integer or
32-bit integer type. If the input data is float or double there is a loss when truncating to integers.

We will always assume to be working in a little endian byte system. I.e. the least significant byte of any
multi-byte integer will be the first in memory and the most significant byte the last.

In the following we detail the encoding and decoding steps further.

3.1. Encoding

Each channel is encoded separately and stored consecutively in the output byte array output.

The Figure 1 shows an overview over the encoding process. Please refer to the text for more details
regarding the differentiation, pre-compression and compression steps.

3.1. Encoding

34

Input Array "v" (32 bit int)

Differentiate

Differentiate

Apply First Pre-Compression Scheme

Apply Third Pre-Compression Scheme

Apply Second Pre-Compression Scheme

Any Value > 16 bits ?

Yes

No

Apply zlib compression

Determine Best Pre-Compression

Pre-Compression

rate > 1?

Yes No

Store in Byte Array with Prefix Byte (see Table 4)

Compression

improved?

Yes

No Restore Previous State

Maximum Compression

selected?
No

Yes

Any Value > 16 bits ?

Store 2nd Difference Array as 16 bit

Yes

No

Store 2 First Values as short Type to the buffer

Store 2 First Values as int Type to the buffer

Get nsamples Entries for current Channel

Gone through all

channels?

Yes

No

Increase Channel Counter

Figure 1: Summary of the encoding procedure. Please refer to the text for more details regarding the differentiation, pre-
compression and compression steps.

 3.1. Encoding

35

3.1.1. Differentiation

Given the vector v, for the current channel, with nsamples 32-bit integer entries (hereafter simply int)

we compute the difference vector d with nsamples entries of type int according to

 d[i] = v[i] - v[i-1]

where i=1,...,nsamples-1 is the index. Furthermore we choose d[0] = v[0].

The same procedure is applied to obtain the double difference vector dd of length nsamples and type

int.

 dd[i] = d[i] - d[i-1] = v[i] - v[i-1] - v[i-1] + v[i-2]

where i=2,...,nsamples-1 is the index and analogous to above we set dd[1] = d[1] and also set
dd[0] = d[0].

3.1.2. Pre-Compression

In this step the encoder determines if it is possible to store the 32-bit difference vector dd entries as 8-bit

or 16-bit numbers and furthermore determines if up to 4 subsequent entries in dd can be fitted in an 8-bit

number. The result is stored in an unsigned char array buffer.

3.1.2.1. The First Two Entries

Since the two first values of the second differences array dd (see chapter 3.1.1) do not undergo the

differentiation process it is likely, assuming neighboring data points are correlated, that their values will be

larger than the rest of the array. They will be stored either as short int type (16-bit) values, provided

they fit, or as int type values. The two options are differentiated by the prefix byte, which we describe

later on (see section 3.1.2.5). Note also that the pre-compression schemes skip the first two entries and

work only from the third dd entry onwards.

3.1.2.2. Pre-Compression Schemes

The dd input is tested for compressibility using three different compression schemes. Each of these

schemes basically checks if m subsequent values of the vector dd can be fitted in a single byte instead of

the m * 4 bytes (of each of the 32-bit input integers) with m ranging from 2 to 4. The sequences of values

which satisfy that condition are encoded into 1 byte in the output array buffer as the index to a table

which uniquely determines the sequence.

Note that only one scheme, the best performing one, is used for the pre-compression. In case none of
them achieves a compression rate (i.e. output bytes divided by input bytes) < 1 for some given input, no
pre-compression is employed.

First Compression Scheme

We will illustrate the idea in more detail in the following example which corresponds to the first out of
three compression schemes used:

• We check if the subsequent values dd[q], dd[q+1] are both contained in the interval [-7, 7].

Note that q starts with the third entry of dd.

• If so they can be encoded as an index of the table shown in Table 1.

• The index for any entry of the table is computed according to the convention

 index = j + i * ∆

where ∆ is the width of the table (15 in our case), j stands for the column and i is the row. Please

note that i,j belong to the interval [0,14]. Their value is obtained by adding (∆ - 1)/2 to the

respective dd[q], dd[q+1] to be encoded. In the example in Table 1, where dd[q] = 6 and

dd[q+1] = -4,

 i = 6 + (15 - 1)/2 = 13 and j = -4 + 7 = 3.

3.1. Encoding

36

The obtained index is than stored in the output byte array buffer.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 (-7,-7) (-7,-6) (-7,-5) (-7,-4) (-7,-3) (-7,-2) (-7,-1) (-7,0) (-7,1) (-7,2) (-7,3) (-7,4) (-7,5) (-7,6) (-7,7)

1 (-6,-7) (-6,-6) (-6,-5) (-6,-4) (-6,-3) (-6,-2) (-6,-1) (-6,0) (-6,1) (-6,2) (-6,3) (-6,4) (-6,5) (-6,6) (-6,7)

2 (-5,-7) (-5,-6) (-5,-5) (-5,-4) (-5,-3) (-5,-2) (-5,-1) (-5,0) (-5,1) (-5,2) (-5,3) (-5,4) (-5,5) (-5,6) (-5,7)

3 (-4,-7) (-4,-6) (-4,-5) (-4,-4) (-4,-3) (-4,-2) (-4,-1) (-4,0) (-4,1) (-4,2) (-4,3) (-4,4) (-4,5) (-4,6) (-4,7)

4 (-3,-7) (-3,-6) (-3,-5) (-3,-4) (-3,-3) (-3,-2) (-3,-1) (-3,0) (-3,1) (-3,2) (-3,3) (-3,4) (-3,5) (-3,6) (-3,7)

5 (-2,-7) (-2,-6) (-2,-5) (-2,-4) (-2,-3) (-2,-2) (-2,-1) (-2,0) (-2,1) (-2,2) (-2,3) (-2,4) (-2,5) (-2,6) (-2,7)

6 (-1,-7) (-1,-6) (-1,-5) (-1,-4) (-1,-3) (-1,-2) (-1,-1) (-1,0) (-1,1) (-1,2) (-1,3) (-1,4) (-1,5) (-1,6) (-1,7)

7 (0,-7) (0,-6) (0,-5) (0,-4) (0,-3) (0,-2) (0,-1) (0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)

8 (1,-7) (1,-6) (1,-5) (1,-4) (1,-3) (1,-2) (1,-1) (1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)

9 (2,-7) (2,-6) (2,-5) (2,-4) (2,-3) (2,-2) (2,-1) (2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)

10 (3,-7) (3,-6) (3,-5) (3,-4) (3,-3) (3,-2) (3,-1) (3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

11 (4,-7) (4,-6) (4,-5) (4,-4) (4,-3) (4,-2) (4,-1) (4,0) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7)

12 (5,-7) (5,-6) (5,-5) (5,-4) (5,-3) (5,-2) (5,-1) (5,0) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7)

13 (6,-7) (6,-6) (6,-5) (6,-4) (6,-3) (6,-2) (6,-1) (6,0) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) (6,7)

14 (7,-7) (7,-6) (7,-5) (7,-4) (7,-3) (7,-2) (7,-1) (7,0) (7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,7)

Table 1: The table has 225 entries (the index thus ranges from 0 to 224). The orange marked cell represents the entry for dd[q] =

6, dd[q+1] = -4 which corresponds to the index index = 198.

Second Compression Scheme

Other than the above mentioned the encoding can also be done with a second scheme.

a. First the subsequent values of dd[q], dd[q+1], dd[q+2] are considered (thus instead of a 2

dimensional array for the indexing one obtains a 3 dimensional array). The values are probed to

see whether all fall in the interval [-2, 2]. The indexing in this case is just an extension of the

aforementioned:

 index = k + (j + i * ∆) * ∆ .

 Here ∆ = 5 and i,j,k belong to the interval [0,4]. The index thus ranges from 0 to 124.

b. In case the condition (a). cannot be achieved a second check is done to determine if the

subsequent values dd[q], dd[q+1] fall in the interval [-5, 5]. The index being computed for

the 2 dimensional case now added to an offset of 125 to avoid interference with the item (a) above.

 index = j + i * ∆ + 125

The width of the table is ∆ = 11 which results in an index for (b) ranging from 125 to 245, and an
overall (considering a and b) index ranging from 0 to 245.

Third Compression Scheme

The final compression scheme, analogously to the second scheme tries two possibilities out.

a. We consider the four subsequent values dd[q], dd[q+1], dd[q+2], dd[q+3] (thus the

indexing happens over a 4 dimensional array). We check if the values are all in the interval [-1,

1]. Thus the indexing is of the form

 index = l + (k + (j + i * ∆) * ∆) * ∆.

 The width ∆ = 3 and i,j,k,l belong to the interval [0, 2]. The index ranges from 0 to 80.

 3.1. Encoding

37

b. If (a) is not achieved a second test will check if dd[q], dd[q+1] both fall in the interval [-6,

6]. Thus we have ∆ = 13 and i,j belong to the interval [0,12]. The index carries an offset of

81 to avoid conflicts with (a)

 index = j + i * ∆ + 81 .

Thus (b) ranges from 81 to 249 and overall the index ranges from 0 to 249, which is then stored in
the output byte buffer.

A summary of the pre-compression schemes is given in Table 2.

Pre-
Compression
Scheme

#Sequential
Entries to be
Compressed

Value
Range

Index
Range

∆ Table Indexing

First 2 [-7,7] [0,224] 15 j + i * ∆

Second a 3 [-2,2] [0,124] 5 k + (j + i * ∆) * ∆

Second b 2 [-5,5] [125,245] 11 j + i * ∆ + 125

Third a 4 [-1,1] [0,80] 3 l + (k + (j + i * ∆) * ∆) * ∆

Third b 2 [-6,6] [81,249] 13 j + i * ∆ + 81

Table 2: Summary of the pre-compression schemes. Note that the indexes i,j,k,l run from [0, ∆ - 1]. Add (∆ - 1) / 2 to the respective
sequential entry to obtain the corresponding i,j,k,l index.

3.1.2.3. Handling non encodable values

In case values arise which do not fall within the limitations described in the preceding section 3.1.2.2 the

values are stored, provided they fit, in byte (8-bit), short int (16-bit) or int (32-bit) format in the output

byte buffer. They are respectively preceded by one byte announcing the number x of byte, short int

or int types following one after the other. The maximum value of x depends on what compression

scheme (and hence which values in the range 0 to 255 are still free) is being used.

Table 3 shows the respective values for each scheme.

The interval for x is supposed to be read in the reverse direction. I.e. if the value of the announcing byte

corresponds to the upper bound in the table, it means that only one entry of a respective type (byte,

short int, or int) is being announced. While if the value corresponds to the lower bound the maximum

number sequential inputs is being announced.

Should x be too small to accommodate the number of sequential bytes, short ints or ints, one writes

the remaining values by simply issuing a new announcing byte after the first maximum sequential inputs
have been stored to the output buffer.

 maximum sequential inputs x interval for x

Pre-Compression
Scheme

byte
(8bits)

short int
(16bits)

int
(32bits)

byte
(8bits)

short int
(16bits)

int
(32bits)

First 7 6 6 [248,254] [242,247] [236,241]

Second 5 4 unused [250,254] [246,249] unused

Third 3 2 unused [252,254] [250,251] unused

Table 3: Maximum amount of sequential byte, short int or int type values to be announced by each signaling byte as a function of
pre-compression schemes. The index interval into which the information is written is also shown.

Moreover, as can be seen from

Table 3 the schemes second and third do not consider the int type values. Indeed the schemes shall

always be tried out sequentially, and if on the first scheme int type data is detected the two other

schemes are not to be used.

3.1. Encoding

38

3.1.2.4. Pre-Compression Criterion

The length of the second difference array in bytes is nsamples * 4 (as it is an array of 32-bit integers).

The pre-compressed buffer shall have a maximum size in bytes corresponding nsamples * 2. If however

values are detected which cannot fit in 2 byte numbers the pre-compressed buffer shall have the
maximum length corresponding to the length of the second difference array.

Should the pre-compressed buffer exceed the maximum size at any time the pre-compression is not
convenient and should therefore not be used.

3.1.2.5. Storing pre-compressed data

The result of the most successful pre-compression (i.e. the one which generates the shortest output byte
array) is stored with a prefixed byte specifying what pre-compression scheme was used and whether any
uncompressed data is contained in the pre-compressed array.

Table 4 shows the values the prefix byte should have depending on the pre-compression and also the
Zlib compression which is described in the next section.

Prefix
Byte
value

pre-compression mode / compression

0 No Compression

3 First Scheme

4 Second Scheme

5 Third Scheme

6 No Compression + first 2 entries int

7 First Scheme + first 2 entries int

8 No Compression (all int)

9 zlib on Second Difference dd

13 zlib on First Scheme

14 zlib on Second Scheme

15 zlib on Third Scheme

17 zlib on First Scheme + first 2 entries int

18 zlib on Second Scheme + first 2 entries int

19 zlib on Third Scheme + first 2 entries int

29 zlib on Second Difference dd (all int)

Table 4: Values of the prefix byte as a function of the pre-compression and compression mode. If not otherwise specified the array
onto which the compression is applied is of type short int. The label "first 2 entries int" refers to the fact that the first two entries of
the dd array are of type int (i.e. cannot be stored in short int). The label "all int" means the dd array is of type int.

3.1.3. ZLib Compression

Following the pre-compression step we apply the Zlib compress function to the buffer (i.e. without the

prefix byte).

The Zlib library and its documentation can be downloaded at http://zlib.net/. The current version of Zlib
used for the BESA file format is version 1.2.5, April 19th, 2010.

The resulting compressed byte array overwrites the aforementioned buffer array. There is one

particularity, the first 4 bytes give the length in bytes of the following zlib compressed array.

If the option "maximum compression" is specified in the BESA software the second difference array is
going to be compressed directly by zlib, without the pre-compression step.

 3.1. Encoding

39

In that case the second difference array dd is treated analogously to the pre-compressed array buffer.

It is also checked if the difference array is completely containable in 16-bit numbers, in which case the
compression is performed on a 16-bit copy thereof and the prefix byte is set to code 9. Otherwise the zlib
compression is directly applied to the 32-bit array in which case the prefix byte code is set to 29.

3.2. Decoding

40

3.1.4. Final Output

Once the compression for one channel is complete the resulting byte array, including the prefix byte is

stored in the output byte array. The next channel is appended immediately after that. An example on

how the output array should look like can be seen in Figure 2.

3.2. Decoding

The decoding of the BESA compression format is achieved by a reverse application of the steps applied

in the previous section 3.1. The resulting array should have nsamples times the number of channels

entries.

The size of the encoded block has to be obtained from the offset of the data block (see section 1.2 and
2.6). Each channel is encoded separately. Thus for each channel we have to perform the decompression

up to the point that nsamples points have been recovered. After which the offset chan_offset from the

start of the data block for the beginning of the next channel is known (simply one byte more than the last

byte necessary to read out all nsamples points).

The encoding steps are stored in the first byte of the compressed string. Please refer to

Table 4 for the possible codes.

In case the buffer is Zlib compressed the first 32 bits after the prefix byte give the length in bytes of the
Zlib compressed buffer, which follows immediately after. For convenience we present an example on how
the compressed array should look like (see Figure 2).

0000000000000011010000000000111 10000000000000100001010100100010000010000010001

Prefix

Byte

Zlib Compressed array

length

Compressed array... Etc...100101010011001000010101

Prefix

Byte

First 2

short int

Entries

Remaining

entries

Figure 2 Example for the structure in memory of the BESA file compression format. Here the code in the first Prefix Byte,
representing the first stored channel is 17. Thus according to Table 4 the following bytes will be zlib compressed, and once the zlib
compression is undone the first two entries of the first scheme pre-compressed array shall be integers. The dark blue piece of the
memory indicates the length in bytes of the red zlib compressed buffer. It is a 32-bit number written in little endian byte convention
and corresponds to 106503. The second Prefix Byte marks the beginning of the next channel, which has code 4, indicating it was
compressed according to the second scheme. The light blue part shows the first two short int entries of the second difference array
(2705, -32767), while the yellow part indicates the remaining bytes of the second difference array encoded according to the second
scheme (the decoded values following 3.1.2.2 being: -2, 2, 1, 0, -2, -2, -3, -3, etc...).

3.2.1. ZLib Decompression

The inverse to the the zlib compress function (see section 3.1.3) is the uncompress function. Given the

length of the zlib compressed array (the number in blue in Figure 2) uncompress is applied to the

compressed array (red marked section in Figure 2).

Please refer to the zlib documentation for any further details.

3.2.2. De-Pre-Compression

Once the zlib decompression is done (if even required), we have to apply the inverse pre-compression
scheme given in the prefix byte.

Each byte of the buffer is probed to see if it carries the code for a sequence of second difference array
entries (e.g.

Table 1) or whether the byte announces a sequence of byte, short int or int type numbers (please

note that they will be stored according to the little endian byte convention. I.e. least significant byte first).

The buffer shall then be translated to the original second differences array.

 3.2. Decoding

41

3.2.3. Integration

The recovered second differences array dd can be transformed back to the original input array v
according to the sequential application of the following operations

 d[i] = dd[i] + d[i-1],

 v[i] = d[i] + v[i-1].

Recalling that dd[0]=d[0]=v[0], dd[1]=d[1]. Once the array v has been recovered decoding has

been completed.

Input compressed array (chan_offset = 0)

Evaluate Prefix Byte (see Table 4)

Zlib compression applied? Yes

No

Pre-compression applied? Yes

No

Integration

Integration

Store to output

Get compressed array length from 4 bytes following the prefix byte

Apply zlib uncompress

Get pre-compression scheme

Apply de-pre-compression until nsamples are obtained

Store chan_offset marking beginning of next channel

Next channel starts at input array + chan_offset

Decoded all channels?

Yes

No

Figure 3: Decoding procedure. The steps concerning the decompression, de-pre-compression and integration are further detailed in
the text.

